subject
Engineering, 06.07.2019 04:20 Graciouzgigi1394

Steam in a heating system flows through tubes whose outer radius is 2.5 cm and whose walls are maintained at a temperature of 180 °c . circular aluminum alloy 2024-t6 fins ( k= 186 wm. k) of outer radius 3 cm and constant thickness 1 mm are attached to the tube. the space between the fins is 3 mm and thus there are 250 fins per meter of tube length. heat is transferred to the surrounding air at too-25 °c, with a heat transfer coefficient of 40 w/m2. k. manufacturer a claims that this system is rated at 3.5 kw per meter of tube length. if the fins are an integral part of the steam tube, find the heat transfer rate in kw for a 1-m length of tube. is manufacturer a's claim valid? compare the heat transfer rate from 1 meter of tube length if there are no fins.

ansver
Answers: 3

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Amass of 1.5 kg of air at 120 kpa and 24°c is contained in a gas-tight, frictionless piston-cylinder device. the air is now compressed to a final pressure of 720 kpa. during the process, heat is transferred from the air such that the temperature inside the cylinder remains constant. calculate the boundary work input during this process.
Answers: 2
question
Engineering, 03.07.2019 15:10
If you were designing a bumper for a car, would you prefer it to exhibit elastic or plastic deformation? why? consider the functions of a bumper in both a minor "fender-bender" and a major collision.
Answers: 1
question
Engineering, 04.07.2019 18:20
An engine runs on the ideal diesel cycle. the cycle has a compression ratio of 20 and a cutoff ratio of 2. the highest temperature in the cycle is 1200 k. if the heat into the system is 300 kj/kg of working fluid and using variable specific heats determine the work produced per mass of working fluid
Answers: 3
question
Engineering, 04.07.2019 19:10
An external consultant recommends that a plant installs a bank of capacitors for power factor correction. this will reduce the peak electrical demand charges by an average of 93 kw every month. the plant current pays $13 per kw in peak demand charges. the capacitor bank will include 223 kw of fixed capacitors, and 183 of variable capacitors. the fixed capacitors cost $59 per kw, and the variable capacitors will cost $65 per kw. the consultant charges 21% of the equipment costs to install the capacitors. because this project will reduce the demand for the electric utility, they are prepared to provide a one-time rebate of $42 per kw of reduced demand. what is the simple payback period for this project (in years)?
Answers: 2
You know the right answer?
Steam in a heating system flows through tubes whose outer radius is 2.5 cm and whose walls are maint...
Questions
question
Business, 01.05.2021 06:50
question
Chemistry, 01.05.2021 06:50
question
Mathematics, 01.05.2021 06:50
question
Mathematics, 01.05.2021 06:50
question
Mathematics, 01.05.2021 06:50
Questions on the website: 13722361