subject
Engineering, 26.07.2019 16:10 ericsmith19

Consider a large plane wall of thickness l = 0.4 m, thermal conductivity k= 2.3 w/m x °c, and surface area a= 20 m². the left side of the wall is maintained at a constant temperature of t = 80°c while the right side loses heat by convection to the surrounding air at t¥ = 15°c with a heat transfer coefficient of h = 24 w/m² x °c. assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) evaluate the rate of heat transfer through the wall.

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 18:20
Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 mpa and -10°c at a rate of 0.05 ka/s and leaves at 0.8 mpa and 50°c. the refrigerant is cooied in the condenser to 0.72 mpa and 26'c. it is then throttled to 0.15 mpa. sketch the t-s diagram for the system and evaluate: 6) the rate of heat removai from the refrigerated space (kw), it) the power input to the compressor (kw), ii) the isentropic efficiency of the compressor (%), and iv) the cop of the refrigerator.
Answers: 2
question
Engineering, 04.07.2019 19:10
Ahelical coil spring has a mean diameter of 50 mm, a wire diameter of 5.5 mm and is wound with a pitch of 10 mm. the spring steel has an ultimate strength of 1250 mpa. find the force needed to compress the spring solid and the wire stress in this condition. state whether the spring will return to its initial length.
Answers: 1
question
Engineering, 04.07.2019 19:20
In the winter, in order to keep the classroom steadily at 68 f before 10 pm, heating with an average rate of 42,000 btu/hr is provided. assume the outdoor temperature maintains at 32°f, determine the electrical power (kw) required to (a) operate a reversible heat pump (b) operate a real heat pump with a cop (7) of 4.5 and (c) operate an electrical-resistance heater.
Answers: 3
question
Engineering, 04.07.2019 19:20
Consider airflow over a flat plate of length l = 1.5 m under conditions for which transition occurs at le = 0.9 m based on the critical reynolds number, re,e = 5 x 10. evaluating the thermophysical properties of air at 400 k, determine the air velocity. (hint: use the tables to find the properties of air)
Answers: 3
You know the right answer?
Consider a large plane wall of thickness l = 0.4 m, thermal conductivity k= 2.3 w/m x °c, and surfac...
Questions
question
Mathematics, 19.07.2019 12:40
Questions on the website: 13722367