subject
Engineering, 16.12.2019 22:31 nakiyapulley7466

A3-ft-diameter duct is used to carry ventilating air into a vehicular tunnel at a rate of 9000 ft3/min. tests show that the pressure drop is 1.5 in. of water per 1500 ft of duct. what is the value of the friction factor for this duct and the approximate size of the equivalent roughness of the surface of the duct? ans: f = 0.0292, e = 0.0132ft.

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 19:10
10 kg of co2 is initially contained at 400 kpa and 300 k. the gas constant for carbon dioxide is 189 j/lkg k) and has a specific heat ratio, k, of 1.289. isentropic expansion then occurs until the pressure is 200 kpa. a) determine the initial volume of co2 in m. b) determine the final temperature in k. c) determine the work done by the system during the expansion kl.
Answers: 2
question
Engineering, 04.07.2019 19:10
With increases in magnification, which of the following occur? a. the field of view decreases. b. the ambient illumination decreases. c. the larger parts can be measured. d. the eyepiece must be raised.
Answers: 1
question
Engineering, 04.07.2019 19:10
Tom is having a problem with his washing machine. he notices that the machine vibrates violently at a frequency of 1500 rpm due to an unknown rotating unbalance. the machine is mounted on 4 springs each having a stiffness of 10 kn/m. tom wishes to add an undamped vibration absorber attached by a spring under the machine the machine working frequency ranges between 800 rpm to 2000 rpm and its total mass while loaded is assumed to be 80 kg a) what should be the mass of the absorber added to the machine so that the natural frequency falls outside the working range? b) after a first trial of an absorber using a mass of 35 kg, the amplitude of the oscillation was found to be 10 cm. what is the value of the rotating unbalance? c) using me-3.5 kg.m, find the optimal absorber (by minimizing its mass). what would be the amplitude of the oscillation of the absorber?
Answers: 3
question
Engineering, 04.07.2019 19:20
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
You know the right answer?
A3-ft-diameter duct is used to carry ventilating air into a vehicular tunnel at a rate of 9000 ft3/m...
Questions
question
Computers and Technology, 22.06.2019 04:00
question
Mathematics, 22.06.2019 04:00
Questions on the website: 13722360