subject
Engineering, 13.02.2020 19:38 jmccrary2000

A rod of diameter D = 25 mm and thermal conductivity k = 60 W/m ⋅ K protrudes normally from a furnace wall that is at Tw = 200°C and is covered by insulation of thickness Lins = 200 mm. The rod is welded to the furnace wall and is used as a hanger for supporting instrumentation cables. To avoid damaging the cables, the temperature of the rod at its exposed surface, To, must be maintained below a specified operating limit of Tmax = 100°C. The ambient air temperature is T[infinity] = 25°C, and the convection coefficient is h = 15 W/m2 ⋅ K. Derive an expression for the exposed surface temperature as a function of axial location on the rod if it is 700 mm long and the tip adiabatic, total and plot the temperature as a function of length. Repeat your calculations for an insulation layer only 100 mm thick.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Amass of 1.5 kg of air at 120 kpa and 24°c is contained in a gas-tight, frictionless piston-cylinder device. the air is now compressed to a final pressure of 720 kpa. during the process, heat is transferred from the air such that the temperature inside the cylinder remains constant. calculate the boundary work input during this process.
Answers: 2
question
Engineering, 04.07.2019 18:10
Apump is used to circulate hot water in a home heating system. water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. the inlet pressure and temperature are 14.7 lbf/in.2, and 180°f, respectively; at the exit the pressure is 60 lbf/in.2 the pump requires 1/15 hp of power input. water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 btu/lb or. neglecting kinetic and potential energy effects, determine the temperature change, in °r, as the water flows through the pump.
Answers: 1
question
Engineering, 04.07.2019 18:10
Determine whether or not it is possible to compress air adiabatically from k to 140 kpa and 400 k. what is the entropy change during this process?
Answers: 3
question
Engineering, 04.07.2019 18:10
Carbon dioxide gas expands isotherm a turbine from 1 mpa, 500 k at 200 kpa. assuming the ideal gas model and neglecting the kinetic and potential energies, determine the change in entropy, heat transfer and work for each kilogram of co2.
Answers: 2
You know the right answer?
A rod of diameter D = 25 mm and thermal conductivity k = 60 W/m ⋅ K protrudes normally from a furnac...
Questions
question
English, 20.01.2021 04:00
Questions on the website: 13722360