subject
Engineering, 03.03.2020 04:26 valeriegarcia12

A Student cycle engine is analyzed using the cold air-standard method. Given the definition of each process in the cycle, determine the thermal efficiency of the engine for each set of defined ratios listed below. All ratios are given as the larger value over the smaller one.--Given Values--Process 1-2 = Isentropic compression & volume ratio=rv12Process 2-3 = Isobaric compression & volume ratio=rv23Process 3-4 = Isometric heat addition & pressure ratio=rP34Process 4-5 = Isometric heat addition & temperature ratio=rT45Process 5-6 = Isentropic expansionProcess 6-1 = Isometric coolingEnter the equation for W12(m, cp, cv, T1,T2,T3,T4,T5,T6)

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
What difference(s) did you notice using a pneumatic circuit over hydraulic circuit.explain why the pneumatic piston stumbles when it hits an obstacle.
Answers: 2
question
Engineering, 04.07.2019 18:10
Aloaded platform of total mass 500 kg is supported by a dashpot and by a set of springs of effective stiffness 72 kn/m. it is observed that when the platform is depressed through a distance x = 12.5 cm below its equilibrium position and then released without any initial velocity; it reaches its equilibrium position in the shortest possible time without overshoot. find the position and velocity of the loaded platform 0.10 sec. after its release. if a further load of 400 kg is added to the platform, find, i) the frequency of damped vibrations, and i) the amplitude of vibration after 2 complete oscillations, given that the initial amplitude is 15 cm.
Answers: 1
question
Engineering, 04.07.2019 18:10
Determine whether or not it is possible to compress air adiabatically from k to 140 kpa and 400 k. what is the entropy change during this process?
Answers: 3
question
Engineering, 04.07.2019 18:10
For the closed feedwater heater below, feedwater enters state 3 at a pressure of 2000 psia and temperature of 420 °f at a rate of ix10 ibhr. the feedwat extracted steam enters state 1 at a pressure of 1000 psia and enthalpy of 1500 btu/lbm. the extracted er leaves at an enthalpy of 528.7 btu/lbm steam leaves as a saturated liquid. (16) a) determine the mass flow rate of the extraction steam used to heat the feedwater (10) b) determine the terminal temperature difference of the closed feedwater heater
Answers: 3
You know the right answer?
A Student cycle engine is analyzed using the cold air-standard method. Given the definition of each...
Questions
Questions on the website: 13722363