subject
Engineering, 07.03.2020 00:00 miko96

Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow rate is 5.5 kg/s, and the power developed is 1120 kW. Stray heat trans- fer and kinetic and potential energy effects are negligible. Determine:

a. The temperature of the air at the turbine exit, in K.
b. The isentropic turbine efficiency.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 15:10
Apiston-cylinder with a volume of 0.25 m3 holds 1 kg of air (r 0.287 k/kgk) at a temperature of 100 c. heat transfer to the cylinder causes an isothermal expansion of the piston until the volume triples. how much heat is added to the piston-cylinder?
Answers: 3
question
Engineering, 03.07.2019 19:30
When using the ohmmeter function of a digital multimeter, the leads are placed in what position relative to the component being tested? a. parallel b. control c. series d. line
Answers: 3
question
Engineering, 04.07.2019 18:20
Agas mixture consists of 8 kmol of h2 and 2 kmol of n2. determine the mass of each gas and the apparent gas constant of the mixture.
Answers: 3
question
Engineering, 04.07.2019 18:20
For each of the following process: a) sketch the p-v diagram, b)sketch t-s diagram, c) sketch t-v diagram, d) sketch the boundary work on one of the diagrams (a, b or c) and e) sketch the reversible heat transfer on one of the diagrams (a, b or c): 1- isobaric process from compressed liquid to superheated vapor 2- isothermal process from compressed liquid to superheated vapor 3- isentropic process from compressed liquid to superheated vapor
Answers: 3
You know the right answer?
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits...
Questions
question
Mathematics, 22.08.2020 23:01
question
Arts, 22.08.2020 23:01
Questions on the website: 13722367