subject
Engineering, 08.04.2020 00:23 pk4mk

Air flows from a large reservoir in which the pressure and temperature are 1 MPa and 30°C, respectively, through a convergent–divergent nozzle and into a constant area duct. The ratio of the nozzle exit area to its throat area is 3.0 and the length– diameter ratio of the duct is 15. Assuming that the flow in the nozzle is isentropic, that the flow in the duct is adiabatic, and that the average friction factor is 0.005, find the back-pressure for a normal shock to appear at the exit to the duct.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 19:30
When using the ohmmeter function of a digital multimeter, the leads are placed in what position relative to the component being tested? a. parallel b. control c. series d. line
Answers: 3
question
Engineering, 04.07.2019 18:10
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°c with a volumetric flow rate of 0.18 m3/s. refrigerant exits at 9 bar, 70°c. changes in kinetic and potential energy from inlet to exit can be ignored. determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kw.
Answers: 1
question
Engineering, 04.07.2019 18:10
Asingle-geared blanking press has a stroke of 200 mm and a rated capacity of 320 kn. a cam driven ram is assumed to be capable of delivering the full press load at constant force during the last 15 percent of a constant-velocity stroke. the camshaft has an average speed of 90 rev/min and is geared to the flywheel shaft at a 6: 1 ratio. the total work done is to include an allowance of 16 percent for friction a) estimate the maximum energy fluctuation b) find the rim weight for an effective diameter of 1.2 m and a coefficient of speed fluctuation of 0.10
Answers: 1
question
Engineering, 04.07.2019 18:10
Aplate clutch has a single pair of mating friction surfaces 250-mm od by 175-mm id. the mean value of the coefficient of friction is 0.30, and the actuating force is 4 kn. a) find the maximum pressure and the torque capacity using the uniform-wear model. b) find the maximum pressure and the torque capacity using the uniform-pressure model.
Answers: 3
You know the right answer?
Air flows from a large reservoir in which the pressure and temperature are 1 MPa and 30°C, respectiv...
Questions
question
Mathematics, 19.07.2019 07:00
question
Mathematics, 19.07.2019 07:00
Questions on the website: 13722367