subject
Engineering, 17.04.2020 00:21 petriajack8375

Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. Assuming the air is modeled as an ideal gas with variations in specific heat, determine (a) the rate power is developed, in kJ per kg of air flowing, and (b) the rate of entropy production within the turbine, in kJ/K per kg of air flowing.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
The thermal expansion or contraction of a given metal is a function of the f a)-density b)-initial temperature c)- temperature difference d)- linear coefficient of thermal expansion e)- final temperature f)- original length
Answers: 2
question
Engineering, 04.07.2019 18:20
Determine the damped natural frequencies and the steady state response of a decoupled damped forced two degrees of freedom system. 10ä1 + 2q1 20q1 10 cos t; 10q2 +4q2 + 40q2 10 cos t
Answers: 3
question
Engineering, 04.07.2019 18:20
Avolume of 2.65 m3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 264 k, 5.6 bar. the air receives 432 kj by work from the paddle wheel. assuming the ideal gas model with cv = 0.71 kj/kg • k, determine for the air the amount of entropy produced, in kj/k
Answers: 2
question
Engineering, 06.07.2019 02:30
An electric motor is used to drive a power press which makes steel turning moment diagrams 323 pressings from a metal sheet. the motor runs at a mean speed of 50 rev/s. the torque required is 10.0nm for 0.2s, followed by 1.0nm for0.3 s with this sequence then being repeated. what is the minimum power required of the motor and the moment of incrtia required for the t1ywhcel if the speed fluctuations are to be restricted to 1.5%?
Answers: 3
You know the right answer?
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat t...
Questions
question
Mathematics, 23.04.2020 07:59
question
Mathematics, 23.04.2020 07:59
question
English, 23.04.2020 07:59
question
Social Studies, 23.04.2020 07:59
question
Mathematics, 23.04.2020 07:59
question
History, 23.04.2020 07:59
question
English, 23.04.2020 07:59
Questions on the website: 13722367