subject
Engineering, 24.04.2020 17:15 hughesbella

Refrigerant 134a flows at steady state through a horizontal tube having an inside diameter of 0.05 m. The refrigerant enters the tube with a quality of 0.3, temperature of 36°C, and velocity of 2 m/s. The refrigerant exits the tube at 9 bar as a saturated liquid. Determine:
(a) the mass flow rate of the refrigerant, in kg/s.
(b) the velocity of the refrigerant at the exit, in m/s.
(c) the rate of heat transfer, in kW, and its associated direction with respect to the refrigerant.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Explain the difference laminar and turbulent flow. explain it with the shear stress and the velocity profiles.
Answers: 1
question
Engineering, 03.07.2019 15:10
Two flowing streams of argon gas are adiabatically mixed to form a single flow/stream. one stream is 1.5 kg/s at 400 kpa and 200 c while the second stream is 2kg/s at 500 kpa and 100 ? . it is stated that the exit state of the mixed single flow of argon gas is 150 c and 300 kpa. assuming there is no work output or input during the mixing process, does this process violate either the first or the second law or both? explain and state all your assumptions.
Answers: 1
question
Engineering, 04.07.2019 18:10
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°c with a volumetric flow rate of 0.18 m3/s. refrigerant exits at 9 bar, 70°c. changes in kinetic and potential energy from inlet to exit can be ignored. determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kw.
Answers: 1
question
Engineering, 04.07.2019 18:10
Asingle-geared blanking press has a stroke of 200 mm and a rated capacity of 320 kn. a cam driven ram is assumed to be capable of delivering the full press load at constant force during the last 15 percent of a constant-velocity stroke. the camshaft has an average speed of 90 rev/min and is geared to the flywheel shaft at a 6: 1 ratio. the total work done is to include an allowance of 16 percent for friction a) estimate the maximum energy fluctuation b) find the rim weight for an effective diameter of 1.2 m and a coefficient of speed fluctuation of 0.10
Answers: 1
You know the right answer?
Refrigerant 134a flows at steady state through a horizontal tube having an inside diameter of 0.05 m...
Questions
question
Mathematics, 23.04.2021 02:40
question
Chemistry, 23.04.2021 02:40
question
Mathematics, 23.04.2021 02:40
question
Mathematics, 23.04.2021 02:40
question
Mathematics, 23.04.2021 02:40
Questions on the website: 13722363