subject
Engineering, 08.06.2020 16:57 ayoismeisjuam

Q2. Air at 400°C and 1.7 bar flows through a horizontal 8.2-cm D pipe at a velocity of 50.0 m/s. I. Calculate Éx (W)? Assuming ideal gas behavior and Mol. Wt (Air)=29 g/mol. [2 Marks]
II. If the air is cooled to 250°C at constant pressure, what is AĖ,? [2 Marks]
Why would it be incorrect to say that the rate of transfer of heat to the gas must equal the rate of
change of kinetic energy? [1 Mark]
(Felder and Rousseau, 2005)

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Abrake has a normal braking torque of 2.8 kip in and heat-dissipating cast-iron surfaces whose mass is 40 lbm. suppose a load is brought to rest in 8.0 s from an initial angular speed of 1600 rev/min using the normal braking torque; estimate the temperature rise of the heat dissipating surfaces.
Answers: 3
question
Engineering, 04.07.2019 18:10
Ariver flows from north to south at 8 km/h. a boat is to cross this river from west to east at a speed of 20 km/h (speed of the boat with respect to the earth/ground). at what angle (in degrees) must the boat be pointed upstream such that it will proceed directly across the river (hint: find the speed of the boat with respect to water/river)? a 288 b. 21.8 c. 326 d. 30.2
Answers: 3
question
Engineering, 04.07.2019 18:10
Assuming compressible flow of air and that the measurements are done at flagstaff a pitot static tube that gives the difference of total and static pressure measures 0.35 m of mercury. what is the velocity of air? assume the temperature to be 300k. (submit your excel or matlab calculation sheet)
Answers: 1
question
Engineering, 04.07.2019 18:10
Condition monitoring is a major component of. (clo4) a)- predictive maintenance. b)-preventive maintenance c)-proactive maintenance d)-reactive maintenance.
Answers: 1
You know the right answer?
Q2. Air at 400°C and 1.7 bar flows through a horizontal 8.2-cm D pipe at a velocity of 50.0 m/s. I....
Questions
Questions on the website: 13722361