subject
Engineering, 13.06.2020 02:57 Garciaapril1597

Consider a two-stage cascade refrigeration system operating between the pressure limits of 1.2 MPa and 200 kPa with refrigerant-134a as the working fluid. The refrigerant leaves the condenser as a saturated liquid and is throttled to a flash chamber operating at 0.45 MPa. Part of the refrigerant evaporates during this flashing process, and this vapor is mixed with the refrigerant leaving the lowpressure compressor. The mixture is then compressed to the condenser pressure by the high-pressure compressor. The liquid in the flash chamber is throttled to the evaporator pressure and cools the refrigerated space as it vaporizes in the evaporator. The mass flow rate of the refrigerant through the low-pressure compressor is 0.15 kg/s. Assuming the refrigerant leaves the evaporator as a saturated vapor and the isentropic efficiency is 80 percent for both compressors, determine (a) the mass flow rate of the refrigerant through the high-pressure compressor, (b) the rate of heat removal from the refrigerated space, and (c) the COP of this refrigerator. Also, determine (d) the rate of heat removal and the COP if this refrigerator operated on a single-stage cycle between the same pressure limits with the same compressor efficiency and the same flow rate as in part (a).

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Water at 70°f and streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream. 0 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. if both streams enters the mixing chamber at the same mass flow rate, determine the temperature and the quality of the existing system.
Answers: 2
question
Engineering, 04.07.2019 18:10
The higher the astm grain-size number, the coarser the grain is. a)-true b)-false
Answers: 3
question
Engineering, 04.07.2019 18:10
Water in a partially filled large tank is to be supplied to the roof top, which is 8 m above the water level in the tank, through a 2.2-cm-internal-diameter pipe by maintaining a constant air pressure of 300 kpa (gage) in the tank. if the head loss in the piping is 2 m of water, determine the discharge rate of the supply of water to the roof top in liters per second.
Answers: 3
question
Engineering, 04.07.2019 19:20
Determine (a) the maximum thermal efficiency of reversible power cycles operating between a hot reservoir at 1000°c and a cold reservoir at 200°c and (b) the maximum cops for reversible refrigeration and heat pump cycies, respectively, between 28°c and 14°c.
Answers: 1
You know the right answer?
Consider a two-stage cascade refrigeration system operating between the pressure limits of 1.2 MPa a...
Questions
question
Mathematics, 05.11.2020 17:00
question
Mathematics, 05.11.2020 17:00
question
Mathematics, 05.11.2020 17:00
Questions on the website: 13722360