subject
Engineering, 16.06.2020 19:57 ashtonsilvers2003

Please complete each answer. In this lab, we’ll take a quick look at the UDP transport protocol. As we saw in Chapter 3 of the text, UDP is a streamlined, no-frills protocol. You may want to re-read section 3.3 in the text before doing this lab. Because UDP is simple and sweet, we’ll be able to cover it pretty quickly in this lab. So if you’ve another appointment to run off to in 30 minutes, no need to worry, as you should be able to finish this lab with ample time to spare. At this stage, you should be a Wireshark expert. Thus, we are not going to spell out the steps as explicitly as in earlier labs. In particular, we are not going to provide example screenshots for all the steps. Start capturing packets in Wireshark and then do something that will cause your host to send and receive several UDP packets. It’s also likely that just by doing nothing (except capturing packets via Wireshark) that some UDP packets sent by others will appear in your trace. In particular, the Simple Network Management Protocol (SNMP – see section 5.7 in the text) sends SNMP messages inside of UDP, so it’s likely that you’ll find some SNMP messages (and therefore UDP packets) in your trace. After stopping packet capture, set your packet filter so that Wireshark only displays the UDP packets sent and received at your host. Pick one of these UDP packets and expand the UDP fields in the details window. If you are unable to find UDP packets or are unable to run Wireshark on a live network connection, you can download a packet trace containing some UDP packets. Whenever possible, when answering a question below, you should hand in a printout of the packet(s) within the trace that you used to answer the question asked. Annotate the printout to explain your answer. To print a packet, use File->Print, choose Selected packet only, choose Packet summary line, and select the minimum amount of packet detail that you need to answer the question.
1. Select one UDP packet from your trace. From this packet, determine how many fields there are in the UDP header.
2. By consulting the displayed information in Wireshark’s packet content field for this packet, determine the length (in bytes) of each of the UDP header field)
3. The value in the Length field is the length of what?
4. What is the maximum number of bytes that can be included in a UDP payload?
5. What is the largest possible source port number?
6. What is the protocol number for UDP? Give your answer in both hexadecimal and decimal notation. To answer this question, you’ll need to look into the Protocol field of the IP datagram containing this UDP segment
7. Examine a pair of UDP packets in which your host sends the first UDP packet and the second UDP packet is a reply to this first UDP packet. (Hint: for a second packet to be sent in response to a first packet, the sender of the first packet should be the destination of the second packet). Describe the relationship between the port numbers in the two packets.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
If the thermal strain developed in polyimide film during deposition is given as 0.0044. assume room temperature is kept at 17.3 c, and thermal coefficient of expansion for the film and the substrate are 54 x 10^-6c^-1 and 3.3 x 10^-6c^-1respectively. calculate the deposition temperature.
Answers: 3
question
Engineering, 04.07.2019 18:10
Thermal stresses are developed in a metal when its a) initial temperature is changed b) final temperature is changed c) density is changed d) thermal deformation is prevented e) expansion is prevented f) contraction is prevented
Answers: 2
question
Engineering, 04.07.2019 18:10
Water at 55c flows across a flat plate whose surface temperature is held constant at 95c. if the temperature gradient at the plate's surface for a given value of x is 18 c/mm, find a) local heat transfer coefficient. b) heat flux
Answers: 3
question
Engineering, 04.07.2019 18:10
Calculate the bore of a cylinder that has a stroke of 18 inches and an extension time of 6 seconds at a flow rate of 4 gal/min.
Answers: 3
You know the right answer?
Please complete each answer. In this lab, we’ll take a quick look at the UDP transport protocol. As...
Questions
Questions on the website: 13722367