subject
Engineering, 16.10.2020 09:01 ally6440

Thermodynamics deals with the macroscopic properties of materials. Scientists can make quantitative predictions about these macroscopic properties by thinking on a microscopic scale. Kinetic theory and statistical mechanics provide a way to relate molecular models to thermodynamics. Predicting the heat capacities of gases at a constant volume from the number of degrees of freedom of a gas molecule is one example of the predictive power of molecular models. The molar specific heat Cv of a gas at a constant volume is the quantity of energy required to raise the temperature T of one mole of gas by one degree while the volume remains the same. Mathematically, Cv=1nΔEthΔT, where n is the number of moles of gas, ΔEth is the change in internal (or thermal) energy, and ΔT is the change in temperature. Kinetic theory tells us that the temperature of a gas is directly proportional to the total kinetic energy of the molecules in the gas. The equipartition theorem says that each degree of freedom of a molecule has an average energy equal to 12kBT, where kB is Boltzmann's constant 1.38×10^−23J/K. When summed over the entire gas, this gives 12nRT, where R=8.314Jmol⋅K is the ideal gas constant, for each molecular degree of freedom. Required:
a. Using the equipartition theorem, determine the molar specific heat, Cv , of a gas in which each molecule has s degrees of freedom. Express your answer in terms of R and s.
b. Given the molar specific heat Cv of a gas at constant volume, you can determine the number of degrees of freedom s that are energetically accessible. For example, at room temperature cis-2-butene, C4H8 , has molar specific heat Cv=70.6Jmol⋅K . How many degrees of freedom of cis-2-butene are energetically accessible?

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Apump is used to circulate hot water in a home heating system. water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. the inlet pressure and temperature are 14.7 lbf/in.2, and 180°f, respectively; at the exit the pressure is 60 lbf/in.2 the pump requires 1/15 hp of power input. water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 btu/lb or. neglecting kinetic and potential energy effects, determine the temperature change, in °r, as the water flows through the pump.
Answers: 1
question
Engineering, 04.07.2019 18:10
Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 k. calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. what is the wavelength ? , below which 10% of the emission is concentrated? what is the wavelength ? 2 above which 10% of the emission is concentrated? determine the wavelength at which maximum spectral emissive power occurs. what is the irradiation incident on a small object placed inside the enclosure?
Answers: 2
question
Engineering, 04.07.2019 18:10
Draw the engineering stress-strain curve for (a) bcc; (b) fcc metals and mark important points.
Answers: 1
question
Engineering, 04.07.2019 18:10
Water at the rate of 1 kg/s is forced through a tube with a 2.5 cm inner diameter. the inlet water temperature is 15°c, and the outlet water temperature is 50°c. the tube wall temperature is 14°c higher than the local water temperature all along the length of the tube. what is the length of the tube?
Answers: 3
You know the right answer?
Thermodynamics deals with the macroscopic properties of materials. Scientists can make quantitative...
Questions
question
Mathematics, 24.08.2021 03:20
question
Mathematics, 24.08.2021 03:20
Questions on the website: 13722360