subject
Engineering, 23.11.2020 18:50 1044537

Figure below shows a power cycle executed by a gas in a piston–cylinder assembly. For process 1–2, U2 - U1 = 15 kJ. For process 3–1, Q31 = 10 kJ. There are no changes in kinetic or potential energy. Determine (a) the work for each process, in kJ, (b) the heat transfer for processes 1–2 and 2–3, each in kJ, and (c) the thermal efficiency.

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 18:10
The drive force for diffusion is 7 fick's first law can be used to solve the non-steady state diffusion. a)-true b)-false
Answers: 1
question
Engineering, 04.07.2019 18:10
Water in a partially filled large tank is to be supplied to the roof top, which is 8 m above the water level in the tank, through a 2.2-cm-internal-diameter pipe by maintaining a constant air pressure of 300 kpa (gage) in the tank. if the head loss in the piping is 2 m of water, determine the discharge rate of the supply of water to the roof top in liters per second.
Answers: 3
question
Engineering, 04.07.2019 18:20
Asolid cylinder is concentric with a straight pipe. the cylinder is 0.5 m long and has an outside diameter of 8 cm. the pipe has an inside diameter of 8.5 cm. the annulus between the cylinder ad the pipe contains stationary oil. the oil has a specific gravity of 0.92 and a kinematic viscosity of 5.57 x 10-4 m2/s. most nearly, what is the force needed to move the cylinder along the pipe at a constant velocity of 1 m/s?
Answers: 3
question
Engineering, 04.07.2019 18:20
Air is compressed isentropically from an initial state of 300 k and 101 kpa to a final temperature of 1000 k. determine the final pressure using the following approaches: (a) approximate analysis (using properties at the average temperature) (b) exact analysis
Answers: 1
You know the right answer?
Figure below shows a power cycle executed by a gas in a piston–cylinder assembly. For process 1–2, U...
Questions
question
Mathematics, 04.07.2019 09:20
question
Mathematics, 04.07.2019 09:20
Questions on the website: 13722367