subject
Engineering, 30.03.2021 01:00 dmaxbexkham

An oil pump operating at steady state delivers oil at a rate of 12 lb/s through a 1-in.-diameter pipe. The oil, which can be modeled as incompressible, has a density of 100 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lbf/in.2 There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. If pumps are available in -horsepower increments, determine the horsepower rating of the pump needed for this application.

ansver
Answers: 3

Another question on Engineering

question
Engineering, 03.07.2019 15:10
If you were designing a bumper for a car, would you prefer it to exhibit elastic or plastic deformation? why? consider the functions of a bumper in both a minor "fender-bender" and a major collision.
Answers: 1
question
Engineering, 04.07.2019 03:10
What precautions should you take to prevent injuries when dealing with heavy loads?
Answers: 1
question
Engineering, 04.07.2019 18:10
Give heat transfer applications for the following, (i) gas turbines (propulsion) ) gas turbines (power generation). (iii) steam turbines. (iv) combined heat and power (chp). (v) automotive engines
Answers: 1
question
Engineering, 04.07.2019 18:10
Water in a partially filled large tank is to be supplied to the roof top, which is 8 m above the water level in the tank, through a 2.2-cm-internal-diameter pipe by maintaining a constant air pressure of 300 kpa (gage) in the tank. if the head loss in the piping is 2 m of water, determine the discharge rate of the supply of water to the roof top in liters per second.
Answers: 3
You know the right answer?
An oil pump operating at steady state delivers oil at a rate of 12 lb/s through a 1-in.-diameter pip...
Questions
question
Mathematics, 29.01.2021 02:20
question
Mathematics, 29.01.2021 02:20
question
Mathematics, 29.01.2021 02:20
Questions on the website: 13722367