subject
Physics, 04.12.2019 04:31 woodsliuheart

10%) problem 7: water flows through a water hose at a rate of q1 = 620 cm3/s, the diameter of the hose is d1 = 1.99 cm. a nozzle is attached to the water hose. the water leaves the nozzle at a velocity of v2 = 10.4 m/s. show answer no attempt 17% part (a) enter an expression for the cross-sectional area of the hose, a1, in terms of its diameter, d1.

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 00:30
Part f - example: finding two forces (part i) two dimensional dynamics often involves solving for two unknown quantities in two separate equations describing the total force. the block in (figure 1) has a mass m=10kg and is being pulled by a force f on a table with coefficient of static friction îľs=0.3. four forces act on it: the applied force f (directed î¸=30â above the horizontal). the force of gravity fg=mg (directly down, where g=9.8m/s2). the normal force n (directly up). the force of static friction fs (directly left, opposing any potential motion). if we want to find the size of the force necessary to just barely overcome static friction (in which case fs=îľsn), we use the condition that the sum of the forces in both directions must be 0. using some basic trigonometry, we can write this condition out for the forces in both the horizontal and vertical directions, respectively, as: fcosî¸â’îľsn=0 fsinî¸+nâ’mg=0 in order to find the magnitude of force f, we have to solve a system of two equations with both f and the normal force n unknown. use the methods we have learned to find an expression for f in terms of m, g, î¸, and îľs (no n).
Answers: 2
question
Physics, 22.06.2019 12:10
Consider a one meter long horizontal pipe with a constant 100 cm^2 cross sectional area. water flows rightward into the pipe at x = 0 with flow velocity 02m/sec at every point within the pipe intake area. at x=1, the rightward flow rate is 0.192 m/sec. assume the water is a conserved quantity in the pipe, so there must be a leak (a sink) somewhere in the pipe. 1. compute net volumetric flow of the source if the system to be in equilibrium. 2. now assume the pipe in the problem has no leaks. compute the net volumetric rate of change for the system.
Answers: 3
question
Physics, 22.06.2019 14:00
Estimate the change in the gibbs energy and molar gibbs energy of 1.0dm3 of octane when the pressure acting on it is increased from 1.0 atm to 100 atm. the mass density of octane is 0.703 g cm−3
Answers: 3
question
Physics, 22.06.2019 14:30
In order to do work, the force vector must be question 1 options: in a different direction than the acceleration vector. in a different direction than the displacement vector. in the same direction as the displacement vector and the motion. in the same direction as the acceleration vector.
Answers: 1
You know the right answer?
10%) problem 7: water flows through a water hose at a rate of q1 = 620 cm3/s, the diameter of the h...
Questions
question
Mathematics, 12.10.2019 20:30
Questions on the website: 13722359