subject
Physics, 12.02.2020 01:58 bdjdbjdjid200

I’m stuck on this question and this is the picture.


I’m stuck on this question and this is the picture.

ansver
Answers: 2

Another question on Physics

question
Physics, 22.06.2019 12:30
When a vertical beam of light passes through a transparent medium, the rate at which its intensity i decreases is proportional to i(t), where t represents the thickness of the medium (in feet). in clear seawater, the intensity 3 feet below the surface is 25% of the initial intensity i0 of the incident beam. what is the intensity of the beam "10" feet below the surface? (give your answer in terms of i0. round any constants or coefficients to five decimal places.)
Answers: 2
question
Physics, 22.06.2019 12:30
Consider a 1000 w iron whose base plate is made of 0.5 cm thick aluminum alloy 2024-t6 (ρ = 2770 kg/m3 and cp = 875 j/kg°c). the base plate has a surface area of 0.03 m2. initially, the iron is in thermal equilibrium with the ambient air at 22°c. assuming 90% of the heat generated in the resistance wires is transferred to the plate, determine the minimum time needed for the plate temperature to reach 200°c.
Answers: 1
question
Physics, 22.06.2019 16:50
Two loudspeakers, 5.5 m apart and facing each other, play identical sounds of the same frequency. you stand halfway between them, where there is a maximum of sound intensity. moving from this point toward one of the speakers, you encounter a minimum of sound intensity when you have moved 0.33 m . assume the speed of sound is 340 m/s.part a) what is the frequency of the sound? part b) if the frequency is then increased while you remain 0.21 m from the center, what is the first frequency for which that location will be a maximum of sound intensity? express your answer to two significant figures and include the appropriate units.
Answers: 2
question
Physics, 22.06.2019 19:30
Select light for the type of wave, adjust the wavelength so that the light is red, and increase the amplitude of the light to the max. then, select the start button at the source location to begin producing the waves. light is a form of electromagnetic wave, containing oscillating electric and magnetic fields. the wave amplitude detector mentioned above shows how the electric field oscillates in time at the location of the probe. the amplitude of the wave at the location of the probe is equal to the maximum electric field measured. how does the amplitude of the wave depend on the distance from the source?
Answers: 2
You know the right answer?
I’m stuck on this question and this is the picture.
...
Questions
question
Health, 06.07.2019 22:00
question
Chemistry, 06.07.2019 22:00
Questions on the website: 13722360