subject
Physics, 12.02.2020 04:50 lewisj53

(Figure 1) shows an Atwood machine that consists of two blocks (of masses m1 and m2) tied together with a massless rope that passes over a fixed, perfect (massless and frictionless) pulley. In this problem you'll investigate some special cases where physical variables describing the Atwood machine take on limiting values. Often, examining special cases will simplify a problem, so that the solution may be found from inspection or from the results of a problem you've already seen.

For all parts of this problem, take upward to be the positive direction and take the gravitational constant, g, to be positive.

Part A

Consider the case where m1 and m2 are both nonzero, and m2>m1. Let T1 be the magnitude of the tension in the rope connected to the block of mass m1, and let T2 be the magnitude of the tension in the rope connected to the block of mass m2. Which of the following statements is true?

Consider the case where and are both nonzero, and . Let be the magnitude of the tension in the rope connected to the block of mass , and let be the magnitude of the tension in the rope connected to the block of mass . Which of the following statements is true?
T1 is always equal to T2.
T2 is greater than T1 by an amount independent of velocity.
T2 is greater than T1 but the difference decreases as the blocks increase in velocity.
There is not enough information to determine the relationship between T1 and T2.
SubmitMy AnswersGive Up

Part B

Now, consider the special case where the block of mass m1 is not present. Find the magnitude, T, of the tension in the rope. Try to do this without equations; instead, think about the physical consequences.

T =
SubmitHintsMy AnswersGive UpReview Part

Part C

For the same special case (the block of mass m1 not present), what is the acceleration of the block of mass m2?

Express your answer in terms of g, and remember that an upward acceleration should be positive.

a2 =
SubmitMy AnswersGive Up

Part D

Next, consider the special case where only the block of mass m1 is present. Find the magnitude, T, of the tension in the rope.

T =
SubmitMy AnswersGive Up

Part E

For the same special case (the block of mass m2 not present) what is the acceleration of the end of the rope where the block of mass m2would have been attached?

Express your answer in terms of g, and remember that an upward acceleration should be positive.

a2 =

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 06:40
How does the kinetic energy of a charge change as the charge moves under the effect of an electric field from higher potential to lower potential? a.the kinetic energy increases.b.the kinetic energy decreases.c.the kinetic energy remains the same.d.the kinetic energy is always zero.
Answers: 1
question
Physics, 22.06.2019 11:30
The least penetrating form of radiation is
Answers: 1
question
Physics, 22.06.2019 16:30
Place several e-field sensors at a few points on different equipotential lines, and look at the relationship between the electric field and the equipotential lines. which statement is true? 1-at any point, the electric field is perpendicular to the equipotential line at that point, and it is directed toward lines of higher voltages. 2-at any point, the electric field is perpendicular to the equipotential line at that point, and it is directed toward lines of lower voltages. 3-at any point, the electric field is parallel to the equipotential line at that point.
Answers: 1
question
Physics, 22.06.2019 17:40
Along wire carrying a 4.2 a current perpendicular to the xy-plane intersects the x-axis at x=−1.7cm. a second, parallel wire carrying a 3.0 a current intersects the x-axis at x=+1.7cm. part a at what point on the x-axis is the magnetic field zero if the two currents are in the same direction? express your answer to two significant figures and include the appropriate units.
Answers: 2
You know the right answer?
(Figure 1) shows an Atwood machine that consists of two blocks (of masses m1 and m2) tied together w...
Questions
Questions on the website: 13722367