subject
Physics, 15.04.2020 23:06 nesharhodes23p965te

To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting.

The law of conservation of energy states the following:

In an isolated system the total energy remains constant.

If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved.

The mechanical energy of a system is defined as the sum of kinetic energy K and potential energy U. For such systems in which no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as

Ki+Ui=Kf+Uf,

where the quantities with subscript "i" refer to the "initial" moment and those with subscript "f" refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution.

The kinetic energy of an object that has mass m and velocity v is given by

K=12mv2.

Potential energy, in contrast, has many forms. Two forms that you will be dealing with often are gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as

Ug=mgh,

where m is the mass of the object, g is the acceleration due to gravity, and h is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem.

Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant k, stretched or compressed a distance x, the associated elastic potential energy is

Ue=12kx2.

When all three types of energy change, the law of conservation of energy for an object of mass m can be written as

12mv2i+mghi+12kx2i=12mv2f+mghf+12kx 2f.

The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy will change. The law of conservation of energy is then written as

12mv2i+mghi+12kx2i+Wnc=12mv2f+mghf+ 12kx2f,

where Wnc represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work Wnc is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system.

Using conservation of energy, find the speed vb of the block at the bottom of the ramp.

Express your answer in terms of some or all the variables m, v, and h and any appropriate constants.

ansver
Answers: 2

Another question on Physics

question
Physics, 22.06.2019 06:30
Which features on mars point to the possibility of liquid water on the planet? impact craters with sharp rims volcanic cones with craters gullies and stream-like channels mountain ranges with faults
Answers: 1
question
Physics, 22.06.2019 07:50
Determine the fraction of the magnitude of kinetic energy lost by a neutron (m1 = 1.01 u) when it collides head-on and elastically with a target particle at rest which is 21h (heavy hydrogen, m = 2.01 u).
Answers: 3
question
Physics, 22.06.2019 13:30
If the spring constant k of a pogo stick is 3500 n m and the weight of the person on the pogo stick is 700 n, how much is the spring in the botom of the pogo stick compressed?
Answers: 2
question
Physics, 22.06.2019 19:30
Aplayground slide is 8.80 ft long and makes an angle of 25.0° with the horizontal. a 63.0-kg child, initially at the top, slides all the way down to the bottom of the slide. (a) choosing the bottom of the slide as the reference configuration, what is the system's potential energy when the child is at the top and at the bottom of the slide? what is the change in potential energy as the child slides from the top to the bottom of the slide? (include the sign of the value in your answer.)
Answers: 3
You know the right answer?
To understand how to apply the law of conservation of energy to situations with and without nonconse...
Questions
question
History, 24.07.2019 20:30
Questions on the website: 13722363