subject
Physics, 21.04.2020 22:15 yasmincx

Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.1 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom?

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 05:50
Acylinder with a movable piston contains 11.7 moles of a monatomic ideal gas at a pressure of 1.32×10^5 pa. the gas is initially at a temperature of 300 k. an electric heater adds 43200 j of energy into the gas while the piston moves in such a way that the pressure remains constant. cp=20.79 j k^−1 mol^−1 for a monatomic ideal gas, and that the number of gas molecules is equal to avogadro's number (6.022×10^23) times the number of moles of the gas. (a) what is the temperature of the gas after the energy is added? (b) what is the change in volume of the gas? (c) how much work is done by the gas during this process?
Answers: 3
question
Physics, 22.06.2019 07:00
Ineed the answers for these promblems i have
Answers: 3
question
Physics, 22.06.2019 11:30
This punnett square shows the cross between two pants. one parent has round seeds (rr). and the other parent has wrinkled seeds (rr) which best describes their offspring as shown in this cross?
Answers: 2
question
Physics, 22.06.2019 17:50
Two identical stars with mass m orbit around their center of mass. each orbit is circular and has radius r, so that the two stars are always on opposite sides of the circle. (a) find the gravitational force of one star on the other. (b) find the orbital speed of each star and the period of the orbit. (c) how much energy would be required to separate the two stars to infinity?
Answers: 1
You know the right answer?
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translationa...
Questions
Questions on the website: 13722359