subject
Physics, 23.04.2020 04:18 hellicuh

2. A common physics experiment involves lowering an open tube into a cylinder of water and moving the tube up and down to adjust the length of the air column in the tube. A tuning fork of frequency 330 Hz is sounded and held at the upper end as the tube is lifted out of the water until the first resonant sound is heard. The length of tube above the water level when the fundamental note sounds is 26 cm. a. Calculate the speed of sound in the air column in the tube. b. Determine another position for the tube that will result in a resonance with this tuning fork. c. Determine the first position (as we again lower the tube into the water) that will resonate with a 256 Hz tuning fork.

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 04:00
However, had it been a real sound, the sound's pitch would have been increased by the doppler effect, since the falcon was moving the source of the sound. perpendicular to away from towards at the same speed as
Answers: 1
question
Physics, 22.06.2019 08:00
Based on the concept of the wave-like nature of light, huygens' theory of light postulates that the more light was "bent" by a substance the slower it would move while traversing across that substance. a) deflection b) interference c) refraction d) resonance
Answers: 3
question
Physics, 22.06.2019 13:00
Aplayground merry-go-round has a radius of 4.6 m and a moment of inertia of 200 kg-m2 and turns with negligible friction about a vertical axle through its center. a child applies a 26.0 n force tangentially to the edge of the merry-go-round for 15.0 seconds. if the merry-go-round is initially at rest, how much work did the child do on the merry-go-round?
Answers: 1
question
Physics, 22.06.2019 15:30
To understand the electric potential and electric field of a point charge in three dimensions consider a positive point charge q, located at the origin of three-dimensional space. throughout this problem, use k in place of 14? ? 0. part adue to symmetry, the electric field of a point charge at the origin must point from the origin.answer in one word.part bfind e(r), the magnitude of the electric field at distance r from the point charge q.express your answer in terms of r, k, and q. part cfind v(r), the electric potential at distance rfrom the point charge q.express your answer in terms of r, k, and q part dwhich of the following is the correct relationship between the magnitude of a radial electric field and its associated electric potential ? more than one answer may be correct for the particular case of a point charge at the origin, but you should choose the correct general relationship. a)e(r)=dv(r)drb)e(r)=v(r)rc)e(r)=? dv(r)drd)e(r)=? v(r)r
Answers: 2
You know the right answer?
2. A common physics experiment involves lowering an open tube into a cylinder of water and moving th...
Questions
question
Mathematics, 22.05.2020 08:05
question
Mathematics, 22.05.2020 08:05
Questions on the website: 13722367