subject
Physics, 13.06.2020 00:57 mariahrpoulin1511

Motion maps for two objects, Y and Z, are shown. A motion map. The position line is a long black arrow pointing right with x as the reference point at left. Above the line are three dots, each with a vector pointed away from x back to back in a line labeled B. Above B, there are four dots, each with a shorter vector pointing away from x in a line labeled A starting closer to x .

Object Z passes object Y after how many seconds?

2
3
4
5

ansver
Answers: 2

Another question on Physics

question
Physics, 21.06.2019 20:20
Ateam of astronauts is on a mission to land on and explore a large asteroid. in addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. with what minimum initial speed vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? assume that the asteroid is approximately spherical, with an average density p 3.84 x108 g/m3 and volume v 2.17 x 1012 m3 recall that the universal gravitational constant is g 6.67 x 10-11 n m2/kg2
Answers: 2
question
Physics, 21.06.2019 23:40
Aregular polygon has angkes of size 150° each.how many side has the polygon
Answers: 1
question
Physics, 22.06.2019 19:00
The law of reflection states that the angle of reflection is equal to the angle of
Answers: 1
question
Physics, 22.06.2019 19:30
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
You know the right answer?
Motion maps for two objects, Y and Z, are shown. A motion map. The position line is a long black ar...
Questions
question
Mathematics, 16.10.2020 17:01
question
Mathematics, 16.10.2020 17:01
question
Mathematics, 16.10.2020 17:01
Questions on the website: 13722361