subject
Physics, 15.07.2020 01:01 gototiger

(a) Without the wheels, a bicycle frame has a mass of 8.72 kg. Each of the wheels can be roughly modeled as a uniform solid disk with a mass of 0.820 kg and a radius of 0.343 m. Find the kinetic energy of the whole bicycle when it is moving forward at 4.25 m/s. J (b) Before the invention of a wheel turning on an axle, ancient people moved heavy loads by placing rollers under them. (Modern people use rollers, too. Any hardware store will sell you a roller bearing for a lazy susan.) A stone block of mass 872 kg moves forward at 0.425 m/s, supported by two uniform cylindrical tree trunks, each of mass 82.0 kg and radius 0.343 m. No slipping occurs between the block and the rollers or between the rollers and the ground. Find the total kinetic energy of the moving objects. J

ansver
Answers: 2

Another question on Physics

question
Physics, 21.06.2019 23:00
The roller coaster from problem #1 then tops a second hill at 15.0 m/s, how high is the second hill? 91.5 m 79.2 m 80.0 m 68.5 m
Answers: 1
question
Physics, 22.06.2019 15:50
If the work required to stretch a spring 3 ft beyond its natural length is 15 ft-lb, how much work is needed to stretch it 27 in. beyond its natural length?
Answers: 1
question
Physics, 22.06.2019 17:30
Atruck driver is attempting to deliver some furniture. first, he travels 8 km east, and then he turns around and travels 3 km west. finally, he turns again and travels 13 km to his destination. what is the drivers total displacement?
Answers: 1
question
Physics, 22.06.2019 19:30
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
You know the right answer?
(a) Without the wheels, a bicycle frame has a mass of 8.72 kg. Each of the wheels can be roughly mod...
Questions
question
Mathematics, 21.08.2020 04:01
Questions on the website: 13722367