subject
Physics, 05.10.2020 14:01 karreemgrant2

NASA's Langley Research Center has been experimenting with the use of air bags to soften the landings of crew exploration vehicles (CEV) on land. What stopping time will be required in order to safely stop a 5708,8kg CEV moving at 24,1 m/s with an average force of 36638,0 N

ansver
Answers: 1

Another question on Physics

question
Physics, 21.06.2019 21:00
Apulley with a mechanical advantage of 5 will require you to pull times the amount of rope. a. 1/5 b. 5 c. 10 d. 15
Answers: 2
question
Physics, 21.06.2019 22:00
1. consider the case in which air fills air shocks on a truck trailer. the pressure in the shocks is 2 mpa. the temperature is 300 k. the diameter of the shock piston is 10 cm and the initial length of the cylindrical cavity containing the compressed air is 40 cm. a. the truck is gradually loaded over a period of a day in a static setting. the temperature is held constant for the atmosphere and thus for the gas shock. calculate the compressibility of the air in the shock for this condition when the truck is initially being loaded. b. if the shocks were loaded in a dynamic setting by driving over bumps, what would be the compressibility? state your assumption. c. what is the initial load on the shock if the shock is in an atmospheric 100 kpa? d. if the shock is compressed using the process described in part a, and the air shock compressed air cavity length decreases to 20 cm, what is the additional load applied to the shock?
Answers: 2
question
Physics, 22.06.2019 01:30
Question 7 [2 marks] in the circuit below, the electromotive force generated by the battery is e = 6.0 v, and the resistances are r1 = r4 = 1.0 q, r2 = r3 =2.0 q. r. the power delivered by the battery to the circuit is closest to a. 6 w в. 12 w с. 15 w d. 18 w e. 20 w final exam autumn 2014 page 5 of 9 68037 physical modelling faculty of science [2 mark] question 8 with reference to question 7, the current through resistor r2 is closest to a. 1 a в. 2 а c. 3 a d. 4 a e. 6 a
Answers: 2
question
Physics, 22.06.2019 15:00
Astudent throws a water balloon with speed v0 from a height h = 1.76 m at an angle θ = 21° above the horizontal toward a target on the ground. the target is located a horizontal distance d = 9.5 m from the student’s feet. assume that the balloon moves without air resistance. use a cartesian coordinate system with the origin at the balloon's initial position. (a) what is the position vector, rtarge t, that originates from the balloon's original position and terminates at the target? put this in terms of h and d, and represent it as a vector using i and j. (b) in terms of the variables in the problem, determine the time, t, after the launch it takes the balloon to reach the target. your answer should not include h. (c) create an expression for the balloon's vertical position as a function of time, y(t), in terms of t, vo, g, and θ. (d) determine the magnitude of the balloon's initial velocity, v0, in meters per second, by eliminating t from the previous two expressions.
Answers: 3
You know the right answer?
NASA's Langley Research Center has been experimenting with the use of air bags to soften the landing...
Questions
question
Mathematics, 14.02.2021 20:40
question
Mathematics, 14.02.2021 20:40
question
English, 14.02.2021 20:40
question
English, 14.02.2021 20:40
question
Mathematics, 14.02.2021 20:40
question
History, 14.02.2021 20:40
question
Mathematics, 14.02.2021 20:40
Questions on the website: 13722360