subject
Physics, 16.10.2020 06:01 lakinbacon4

± Calculating Flux for Hemispheres of Different Radii Learning Goal:
To understand the definition of electric flux, and how to calculate it. Flux is the amount of a vector field that "flows" through a surface. We now discuss the electric flux through a surface (a quantity needed in Gauss's law): ΦE=∫E⃗ ⋅dA⃗ , where ΦE is the flux through a surface with differential area element dA⃗ , and E⃗ is the electric field in which the surface lies. There are several important points to consider in this expression: It is an integral over a surface, involving the electric field at the surface. dA⃗ is a vector with magnitude equal to the area of an infinitesmal surface element and pointing in a direction normal (and usually outward) to the infinitesmal surface element. The scalar (dot) product E⃗ ⋅dA⃗ implies that only the component of E⃗ normal to the surface contributes to the integral. That is, E⃗ ⋅dA⃗ =|E⃗ ||dA⃗ |cos(θ), where θ is the angle between E⃗ and dA⃗ . When you compute flux, try to pick a surface that is either parallel or perpendicular to E⃗ , so that the dot product is easy to compute.
Two hemispherical surfaces, 1 and 2, of respective radii r1 and r2, are centered at a point charge and are facing each other so that their edges define an annular ring (surface 3), as shown. The field at position r⃗ due to the point charge is: E⃗ (r⃗ )=Cr2r^ where C is a constant proportional to the charge, r=|r⃗ |, and r^=r⃗ /r is the unit vector in the radial direction.

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 03:00
An internally reversible refrigerator has a modified coefficient of performance accounting for realistic heat transfer processes of where qin is the refrigerator cooling rate, qout is the heat rejection rate, and is the power input. show that copm can be expressed in terms of the reservoir temperatures tc and th, the cold and hot thermal resistances rt,c and rt,h, and qin, as where rtot rt,c rt,h. also, show that the power input may be expressed as 1.39 a household refrigerator operates with cold- and hot-temperature reservoirs of tc 5 c and th 25 c, respectively. when new, the cold and hot side resistances are rc,n 0.05 k/w and rh,n 0.04 k/w, respectively. over time, dust accumulates on the refrigerator’s condenser coil, which is located behind the refrigerator, increasing the hot side resistance to rh,d 0.1 k/w. it is desired to have a refrigerator cooling rate of qin 750 w. using the results of problem 1.38, determine the modified coefficient of performance and the required power input w under (a) clean and (b) dusty coil conditions. internally reversible refrigerator qout qin w high-temperature reservoir low-temperature reservoir th th,i tc,i tc high-temperature side resistance low-temperature side resistance w qin th tc qinrtot tc qinrtot copm tc qinrtot th tc
Answers: 2
question
Physics, 22.06.2019 08:30
Determine the age of a fossil if it had only one eighth of its original carbon-14 content remaining?
Answers: 3
question
Physics, 22.06.2019 11:20
If the radius of curvature of the cornea is 0.75 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina? express your answer to two significant
Answers: 3
question
Physics, 22.06.2019 14:40
The experiment done in lab is repeated, using a ball that has unknown mass m. you plot your data in the form of f 2 versus m/l, with f in rev/s, m in kg, and l in m. your data falls close to a straight line that has slope 3.19 m/(kg · s2). use g = 9.80 m/s2 and calculate the mass m of the ball.
Answers: 1
You know the right answer?
± Calculating Flux for Hemispheres of Different Radii Learning Goal:
To understand the defin...
Questions
question
Mathematics, 13.07.2019 08:30
question
Mathematics, 13.07.2019 08:30
question
Mathematics, 13.07.2019 08:30
question
Biology, 13.07.2019 08:30
Questions on the website: 13722361