subject
Physics, 28.12.2020 21:10 interndon

Here is part 2 of the question.


Here is part 2 of the question.

ansver
Answers: 3

Another question on Physics

question
Physics, 21.06.2019 20:30
Air enters a compressor operating at steady state at 1.05 bar, 300 k, with a volumetric flow rate of 93 m3/min and exits at 12 bar, 400 k. heat transfer occurs at a rate of 15.5 kw from the compressor to its surroundings. assuming the ideal gas model for air neglecting kinetic potential energy effects, determine the power in put in kw.
Answers: 2
question
Physics, 22.06.2019 01:30
In a thunderstorm, charge builds up on the water droplets or ice crystals in a cloud. thus, the charge can be considered to be distributed uniformly throughout the cloud. for the purposes of this problem, take the cloud to be a sphere of diameter 1.00 kilometer. the point of this problem is to estimate the maximum amount of charge that this cloud can contain, assuming that the charge builds up until the electric field at the surface of the cloud reaches the value at which the surrounding air breaks down. this breakdown means that the air becomes highly ionized, enabling it to conduct the charge from the cloud to the ground or another nearby cloud. the ionized air will then emit light due to the recombination of the electrons and atoms to form excited molecules that radiate light. in addition, the large current will heat up the air, resulting in its rapid expansion. these two phenomena account for the appearance of lightning and the sound of thunder. take the breakdown electric field of air to be eb=3.00ă—106n/c. part a estimate the total charge q on the cloud when the breakdown of the surrounding air is reached. express your answer numerically, to three significant figures, using ďµ0=8.85ă—10â’12c2/(nâ‹…m2) .
Answers: 2
question
Physics, 22.06.2019 03:00
According to newtons universal law of gravitation, which would change the parh of the ball so it traces out widest curved path possible?
Answers: 1
question
Physics, 22.06.2019 05:50
Acylinder with a movable piston contains 11.7 moles of a monatomic ideal gas at a pressure of 1.32×10^5 pa. the gas is initially at a temperature of 300 k. an electric heater adds 43200 j of energy into the gas while the piston moves in such a way that the pressure remains constant. cp=20.79 j k^−1 mol^−1 for a monatomic ideal gas, and that the number of gas molecules is equal to avogadro's number (6.022×10^23) times the number of moles of the gas. (a) what is the temperature of the gas after the energy is added? (b) what is the change in volume of the gas? (c) how much work is done by the gas during this process?
Answers: 3
You know the right answer?
Here is part 2 of the question.
...
Questions
question
Mathematics, 23.11.2020 19:20
question
Mathematics, 23.11.2020 19:20
Questions on the website: 13722367