subject
Physics, 30.11.2021 16:50 zakarycrane9576

For a certain transverse standing wave on a long string, an antinode is at x = 0 and an adjacent node is at x = 0.20 m. The displacement y(t) of the string particle at x = 0 is shown in the figure, where the scale of the y axis is set by ys = 4.3 cm. When t = 0.90 s, what is the displacement of the string particle at (a) x = 0.30 m and (b) x = 0.40 m ? What is the transverse velocity of the string particle at x = 0.30 m at (c) t = 0.90 s and (d) t = 1.3 s?


For a certain transverse standing wave on a long string, an antinode is at x = 0 and an adjacent no

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 04:00
10 newton object is placed 3 meters from the fulcrum. at what distance on the other side would you need to place a 15 newton object to balance the lever? show your work!
Answers: 2
question
Physics, 22.06.2019 04:10
Time remainin52: 42the chart shows data for a moving object.which conclusion is best supported by the information inthe chart? time (s)velocity (m/s
Answers: 3
question
Physics, 22.06.2019 10:30
Light from a sodium lamp passes through a diffraction grating that has 1000 slits per millimeter. the interference pattern is viewed on a screen 1.000 m behind the grating. the first (m = 1) two bright yellow fringes that are visible are 0.7288 m and 0.7300 m from the central maximum. what are the wavelengths of these two fringes?
Answers: 2
question
Physics, 22.06.2019 12:10
Consider a one meter long horizontal pipe with a constant 100 cm^2 cross sectional area. water flows rightward into the pipe at x = 0 with flow velocity 02m/sec at every point within the pipe intake area. at x=1, the rightward flow rate is 0.192 m/sec. assume the water is a conserved quantity in the pipe, so there must be a leak (a sink) somewhere in the pipe. 1. compute net volumetric flow of the source if the system to be in equilibrium. 2. now assume the pipe in the problem has no leaks. compute the net volumetric rate of change for the system.
Answers: 3
You know the right answer?
For a certain transverse standing wave on a long string, an antinode is at x = 0 and an adjacent nod...
Questions
Questions on the website: 13722361