subject
Engineering, 16.07.2021 06:10 JBFROMYD

USING THE ONTARIO BUILDING CODE TO SOLVE THESE QUESTIONS ARCH1013 Architectural Engineering

1. Calculate the minimum width and thickness of footings required to support walls of Cassidy House Elevation B. (1.5/4).

a)Footing width and thickness of exterior walls, if the floor joists span less than 4.9 m:
Cassidy is a Two-storey house, minimum thickness of footing (Table 9.15.3.4.)=
Two storeys of Brick veneer (9.15.3.5.) =
Adjusted Footing width for Cassidy House =
Thickness (9.15.3.8.)=

b)Assume that the house has a load bearing masonry interior wall that is 150mm thick supporting both first and second storey. Determine the minimum width and thickness required of its footing:
Min. thickness of footing for an interior wall that supports two floors (Table 9.15.3.4) =
Adjust for two storey of masonry wall (9.15.3.6.) =
Thickness =

2. Answer the following questions based on foundations details of Cassidy Elevation B. (1.5/4).

a)What is the maximum height of finished ground the foundation wall can support, if it is 2.5m high?
Table 9.15.4.2.A, Construction Notes

b) If you were to build this wall with 190mm thick ICF, what is the minimum vertical reinforcement required, using the height of foundation wall and ground found in earlier questions?
Table 9.15.4.B.

c) If you were to build this wall with unreinforced concrete blocks, what is the minimum thickness of the foundation wall?
Table 9.15.4.2.A.

3. Calculate the footing width of an external wall of a three storey wood frame brick veneered house. Assume it supports joists spanning 11.5m on first and second floors and 10m on third floor. (1/4)

9.15.2.4.B: use the formula;
W = w (εsjs/ storeys x 4.9)

If anyone has any Idea on how to do this or has any Architectural background please explain to me!

Elevation B: Page 13

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Amass of m 1.5 kg of steam is contained in a closed rigid container. initially the pressure and temperature of the steam are: p 1.5 mpa and t 240°c (superheated state), respectively. then the temperature drops to t2= 100°c as the result of heat transfer to the surroundings. determine: a) quality of the steam at the end of the process, b) heat transfer with the surroundings. for: p1.5 mpa and t 240°c: enthalpy of superheated vapour is 2900 kj/kg, specific volume of superheated vapour is 0. 1483 m/kg, while for t 100°c: enthalpy of saturated liquid water is 419kj/kg, specific volume of saturated liquid water is 0.001043m/kg, enthalpy of saturated vapour is 2676 kj/kg, specific volume of saturated vapour is 1.672 m/kg and pressure is 0.1 mpa.
Answers: 3
question
Engineering, 04.07.2019 18:10
Apump is used to circulate hot water in a home heating system. water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. the inlet pressure and temperature are 14.7 lbf/in.2, and 180°f, respectively; at the exit the pressure is 60 lbf/in.2 the pump requires 1/15 hp of power input. water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 btu/lb or. neglecting kinetic and potential energy effects, determine the temperature change, in °r, as the water flows through the pump.
Answers: 1
question
Engineering, 04.07.2019 18:10
You are making beer. the first step is filling the glass carboy with the liquid wort. the internal diameter of the carboy is 15 in., and you wish to fill it up to a depth of 2 ft. if your wort is drawn from the kettle using a siphon process that flows at 3 gpm, how long will it take to fill?
Answers: 1
question
Engineering, 04.07.2019 18:10
Ahot wire operates at a temperature of 200°c while the air temperature is 20°c. the hot wire element is a tungsten wire of 5 um diameter and 2 mm in length. plot using excel current, heat transfer and heat generated by the wire for air velocity varying from 1-10 m/s in steps of lm/s? matlab the sensor voltage output, resistance, or assume nu 0.989 re033pr13 take air properties at tr (200°c20°c)/2 = 110°c properties of tungsten: c 0.13 kj/kg.k 3 p 19250 kg/m k (thermal conductivity) = 174 w/m.k
Answers: 2
You know the right answer?
USING THE ONTARIO BUILDING CODE TO SOLVE THESE QUESTIONS ARCH1013 Architectural Engineering
Questions
question
Mathematics, 13.03.2021 01:00
question
Mathematics, 13.03.2021 01:00
question
Mathematics, 13.03.2021 01:00
question
Mathematics, 13.03.2021 01:00
question
Mathematics, 13.03.2021 01:00
Questions on the website: 13722363