subject
Physics, 11.07.2019 07:30 normarismendoza

A70 kg painter is painting the wall of a building. he stands on a horizontal board of length 6.3 m and mass 15 kg, suspended from vertical ropes attached to each end. if the painter stands 1.6 m from one end of the board, what would the tensions in the ropes be?

ansver
Answers: 1

Another question on Physics

question
Physics, 21.06.2019 22:30
Fft review: linspace, fs, fftshift, nfft 1. generate one second of a cosine of w,-10hz sampled at f, = 100hz and assign it to x. define a tt as your time axis 2. take 64 points fft. 3. as you remember, the dft (which the fft implements) computes n samples of s2t where k-0,1,2, n -1. plot the magnitude of this 64-points fft at range 0 to 63, what do you think of this graph? 4â·to get the x-axis into a hz-frequency form, plot this 64-points fft between-50 to 50 (the 100hz sampling rate) and have n-points between them. 5. according to your figure, what frequency is this cosine wave at? 6. remember that the fft is evaluating from 0 to 2ď€. we are used to viewing graphs from-ď€ to ď€. therefore, you need to shift your graph. 7. now according to your shifted graph. what frequency is this at? 8. note that the spikes have long drop-offs? try a 1024-point dft. note that the peak is closer to 10 and the drop-off is quicker. although, now sidelobes are an issue
Answers: 2
question
Physics, 22.06.2019 00:20
Aparticle of mass m is projected with an initial velocity v0 in a direction making an angle α with the horizontal level ground as shown in the figure. the motion of the particle occurs under a uniform gravitational field g pointing downward. (a) write down the lagrangian of the system by using the cartesian coordinates (x, y). (b) is there any cyclic coordinate(s). if so, interpret it (them) physically. (c) find the euler-lagrange equations. find at least one constant of motion. (d) solve the differential equation in part (c) and obtain x and y coordinates of the projectile as a function of time. (e) construct the hamiltonian of the system, h, and write down the hamilton’s equations (canonical equations) of motion.
Answers: 2
question
Physics, 22.06.2019 03:00
An internally reversible refrigerator has a modified coefficient of performance accounting for realistic heat transfer processes of where qin is the refrigerator cooling rate, qout is the heat rejection rate, and is the power input. show that copm can be expressed in terms of the reservoir temperatures tc and th, the cold and hot thermal resistances rt,c and rt,h, and qin, as where rtot rt,c rt,h. also, show that the power input may be expressed as 1.39 a household refrigerator operates with cold- and hot-temperature reservoirs of tc 5 c and th 25 c, respectively. when new, the cold and hot side resistances are rc,n 0.05 k/w and rh,n 0.04 k/w, respectively. over time, dust accumulates on the refrigerator’s condenser coil, which is located behind the refrigerator, increasing the hot side resistance to rh,d 0.1 k/w. it is desired to have a refrigerator cooling rate of qin 750 w. using the results of problem 1.38, determine the modified coefficient of performance and the required power input w under (a) clean and (b) dusty coil conditions. internally reversible refrigerator qout qin w high-temperature reservoir low-temperature reservoir th th,i tc,i tc high-temperature side resistance low-temperature side resistance w qin th tc qinrtot tc qinrtot copm tc qinrtot th tc
Answers: 2
question
Physics, 22.06.2019 09:30
Gasoline comes from petroleum, which is made from ancient living things. petroleum, therefore, contains a type of energy. a. heat b. nuclear c. biological d. chemical potential
Answers: 2
You know the right answer?
A70 kg painter is painting the wall of a building. he stands on a horizontal board of length 6.3 m a...
Questions
Questions on the website: 13722367