subject
Physics, 02.05.2021 05:20 amandasantiago2001

100 points In the system shown above, the pulley is a uniform disk with a mass of .75 kg and a radius of 6.5 cm. The coefficient of friction between the 5.8 kg mass and the horizontal surface is .25, and the ropes does not slip on the pulley. They system is released from rest. Use work-energy principles to determine the kinetic energy of the (a) 2.8 kg mass and (b) the pulley after the 5.8 kg mass has moved 2.2 meters.


100 points

In the system shown above, the pulley is a uniform disk with a mass

ansver
Answers: 2

Another question on Physics

question
Physics, 21.06.2019 22:30
The membrane surrounding a living cell consists of an inner and an outer wall that are separated by a small space. assume that the membrane acts like a parallel plate capacitor in which the effective charge density on the inner and outer walls has a magnitude of 7.0 × 10-6 c/m2. (a) what is the magnitude of the electric field within the cell membrane? (b) find the magnitude of the electric force that would be exerted on a potassium ion (k+; charge = +e) placed inside the membrane.
Answers: 1
question
Physics, 22.06.2019 08:30
Hey student studies gravity using objects that have the same mass which two objects have the greatest gravitational force acting between them a. 100kg 1.0m 100kg b. 100kg 2.0m 100kg c. 100kg 2.0m 100kg big d. 100kg big 3.0m 100kg big
Answers: 1
question
Physics, 22.06.2019 15:30
What can you increase the strength of an electromagnet by
Answers: 2
question
Physics, 23.06.2019 01:00
The amount of heat required to change liquid water to vapor at its boiling temperature is 2256 kj/kg. the amount of heat required to change liquid mercury to its vapor state at its boiling temperature is 295 kj/kg. one kg of each substance is currently at its boiling point. how will the amount of thermal energy required to change each substance from a liquid to a gas differ?
Answers: 3
You know the right answer?
100 points In the system shown above, the pulley is a uniform disk with a mass of .75 kg and a rad...
Questions
Questions on the website: 13722366