subject
Engineering, 23.06.2020 17:01 rwlockwood1

Apply the particle under a net force model to the block in the horizontal direction:1) Fx = F cos θ - fk - T = m2ax = m2aApply the particle in equilibrium model to the block in the vertical direction:2) Fy = n + F sin θ - m2g = 0Apply the particle under a net force model to the ball in the vertical direction:3) Fy = T - m1g = m1ay = m1aSolve Equation (2) for n:n = m2g - F sin θSubstitute n into fk = ?kn from the above equation:4) fk = k (m2g - Fsin θ)Substitute Equation (4) and the value of T from Equation (3) into Equation (1):F cos θ - k(m2g - Fsin θ) - m1(a + g) = m2aSolve for a in terms of k, m1, m2, g, and ?:

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Ajournal bearing has a journal diameter of 3.250 in with a unilateral tolerance of 20.003 in. the bushing bore has a diameter of 3.256 in and a unilateral tolerance of 0.004 in. the bushing is 2.8 in long and supports a 700-lbf load. the journal speed is 900 rev/min. find the minimum oil film thickness and the maximum film pressure for both sae 20 and sae 20w-30 lubricants, for the tightest assembly if the operating film temperature is 160°f. a computer code is appropriate for solving this problem.
Answers: 3
question
Engineering, 04.07.2019 18:10
Water at 55c flows across a flat plate whose surface temperature is held constant at 95c. if the temperature gradient at the plate's surface for a given value of x is 18 c/mm, find a) local heat transfer coefficient. b) heat flux
Answers: 3
question
Engineering, 04.07.2019 18:10
Ifa component is made of two or more materials with different modulus of elasticity (e), it is called a composite member and we calculate the factor·n". mention the formula for calculating n". also, ifn> 1, explain what will happen to the 1. transformed.gi) ifn 1, what will happen to the material when transformed material when
Answers: 1
question
Engineering, 04.07.2019 18:10
Aturning operation is performed with following conditions: rake angle of 12°, a feed of 0.35 mm/rev, and a depth of cut of 1.1 mm. the work piece is aluminum alloy 6061 with t6 heat treatment (a16061-t6). the resultant chip thickness was measured to be 1.0 mm. estimate the cutting force, fc. use shear stress of 207 mpa and coefficient of friction on the tool face of 0.6.
Answers: 1
You know the right answer?
Apply the particle under a net force model to the block in the horizontal direction:1) Fx = F cos θ...
Questions
Questions on the website: 13722362